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Abstract  - We describe a method for preserving time-invariant phase relationships 
when ratios are taken between any two harmonically related, complex signals. We 
provide a simple example to illustrate our technique, and show how this method is 
implemented when defining time-invariant nonlinear large-signal scattering 
parameters.   

 
I. INTRODUCTION 

 
When two complex signals z and y exist at the same frequency ω/2π, the ratio R of 

the two quantities may be expressed as 
 

                                                         ( ),yzy
z

R φφ −∠=                                                    (1) 

where the phasor notation of z is represented by |z|∠ φz and that of y is represented by 
|y|∠ φy. 
 

When two complex signals exist at different frequencies, obtaining a time-
invariant phase of the ratio is more involved [1-2]. When ratios are taken between two 
harmonically related signals, we can preserve time-invariant phase relationships by 
introducing a third signal that acts as a phase reference. We show that this reference 
signal must have a component at the fundamental frequency in order that the ratios of any 
two harmonically related signals contain a time-invariant phase relationship. We provide 
a simple example to illustrate our technique. Finally, we show how this method is 
implemented when extracting nonlinear large-signal scattering parameters that are time-
invariant.   
 

II. METHOD 
 

Consider two complex signals zk and yl that are harmonically related. Here k and l 
are positive integers representing signals at the kth and lth harmonic terms, respectively. 
In phasor form,  
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Note that all phases φ considered here are in units of degrees (in terms of their respective 
frequencies) and have a modulus of 360° (i.e., 0° ≤ φ < 360°).  
 

At first glance, a commonly assumed equation for taking the ratio of two 
harmonically related complex signals zk and yl is 
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The factor k/l serves to translate the phase from the lth harmonic of the divisor to the kth 
harmonic of the dividend, resulting in the phase of the ratio Rt

kl given in terms of the kth 
harmonic. The superscript ‘t’ is used because eq. (3) gives a time-variant phase. 
Specifically, if k/l is not an integer, there will be a phase ambiguity of 360°/l.  
  

In order to try to avoid a phase ambiguity, we modify eq. (3) by referencing the 
phases of signals zk and yl to some reference phase of a third signal xn at the nth harmonic, 
which gives 
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where 
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In eq. (5), the k/n factor serves to translate the arbitrary phase (0° ≤ φxn

 < 360°) from the 
nth harmonic of xn to the kth harmonic of zk and the l/n factor serves to translate the phase 
from the nth harmonic of xn to the lth harmonic of yl. Combining eqs. (4) and (5) gives 
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Here, we still have the problem that if k/n or l/n are not integers, eq. (6) gives an 
inconsistent phase. Specifically, if k/n or l/n are not integers, there will be up to n (n ≤ l) 
possible answers with a phase ambiguity of 360°/l. If k is a multiple of l or vice versa, 
there will be fewer than n possibilities, but still more than one in general.  
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In order to avoid any phase ambiguity, k/n and l/n must be integers. In order for 
this to be true for all k and l, n must equal one. If the frequency of the reference signal 
(xn) is set to its fundamental frequency (n = 1), then eq. (6) becomes 
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Note that eq. (7) is algebraically identical to eq. (3). It is important, however, to leave the 
φx1

 terms in and perform the phase references for  φzk
 and φyl

 in order to ensure that eq. (7) 
provides a time-invariant phase. Eq. (7) can be simplified in the case of Rk1 (l=1) if y1 
serves as both the divisor and the reference signal: 
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III. EXAMPLE 

 
Here, we provide a simple example illustrating that eq. (3) gives a time-variant 

phase, and that eq. (6) gives a time-variant phase for n > 1. However, eq. (6) does provide 
a time-invariant phase if n = 1.  

 
In this example (see Figure 1), we consider signals with three phase references, 

the  first  one being  arbitrary, where  the  reference  at the fundamental  is x1 = 1∠ 0°,  the  
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Figure 1.  Phasor plot of the fundamental reference x1, the dividend z2, and the divisor y3 
at the first phase reference [all phasors identified by superscript (1)]. 
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reference at the second harmonic is x2 = 1∠ 0°, the dividend (at the second harmonic) is z2 
= 0.7∠ 80°, and the divisor (at the third harmonic) is y3 = 0.4∠ 170°. Figure 2 shows the 
time-domain representation of x1, z2, and y3. From the figure, we can see that the 80° 
phase delay in z2 corresponds to a time delay of 0.111 fundamental-unit period, and the 
170° phase delay in y3 corresponds to a time delay of 0.157 fundamental-unit period. 
Figure 2 illustrates that there is no ambiguity in the time domain if all of the signals are 
synchronous with the fundamental signal. Equation (7) ensures the same in the frequency 
domain. But if, on the other hand, all of the signals are synchronous with a harmonic 
signal, portions of the waveforms at lower frequencies will be lost, resulting in possible 
phase ambiguities.  

 
At the first phase reference, we determine Rt

23 from eq. (3), which by definition 
uses y3 as the reference in this case: 
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Next, we calculate R(2)

23 from eq. (6), using x2 as the reference, as 
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where the superscript ‘(2)’ denotes the phase reference of x2. Finally, we calculate R(1)

23 
from eq. (6), using x1 as the reference, as 
 

                                   ,
1
3

3
2

1
2

1312
3

2)1(
23 














 −−






 −∠= xyxzy

z
R φφφφ                             (11) 

 
where the superscript ‘(1)’ denotes of phase reference of x1. At this first phase reference, 
eqs. (9-11) give the same answer, of 1.75∠ 326.67°, as shown in the first column of Table 
1. 
 
 Next, we consider a second phase reference, where the phase of the fundamental 
frequency is shifted by 100°. This means that the phase at the second harmonic is shifted 
by 2 times 100°, or 200°, and the phase at the third harmonic is shifted by 3 times 100°, 
or 300°. So now, the reference at the fundamental is x1 = 1∠ 100°, the reference at the 
second harmonic is x2 = 1∠ 200°, the dividend is z2 = 0.7∠ 280°, and the divisor is y3 = 
0.4∠ 470° = 0.4∠ 110°. These values are plotted in Figure 3. At this second phase 
reference, we again determine Rt

23, R(1)
23, and R(2)

23 using eqs. (9-11). Here, Rt
23 = 

1.75∠ 206.67° is inconsistent with the answer determined at the first phase reference by 
120° (360°/3). The ratio R(2)

23 = 1.75∠ 326.67°  is  consistent  with the answer determined 
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Table 1.  Determining the ratios of z2 to y3 using three methods at three different phase 
references. 
 

Quantity 1st Phase 
Reference 

2nd Phase 
Reference 

3rd Phase 
Reference 

x1 
 

x2 

 

1∠ 0° 
 

1∠ 0° 
 

1∠ 100° 
 

1∠ 200° 
 

1∠ 200° 
 

1∠ 40° 
 

z2 
 

y3 
 

0.7∠ 80° 
 

0.4∠ 170° 

0.7∠ 280° 
 

0.4∠ 110° 

0.7∠ 120° 
 

0.4∠ 50° 

Rt
23  [eq. (9)] 

 
1.75∠ 326.67° 1.75∠ 206.67° 1.75∠ 86.67° 

R(2)
23  [eq. (10)] 

 
1.75∠ 326.67° 1.75∠ 326.67° 1.75∠ 206.67° 

R(1)
23  [eq. (11)] 1.75∠ 326.67° 1.75∠ 326.67° 1.75∠ 326.67° 

 
 
at the first phase reference. Likewise, the ratio R(1)

23 = 1.75∠ 326.67° is also consistent 
with the answer determined at the first phase reference. The values of all of the quantities 
at the second phase reference are shown in the second column of Table 1. 
 

Finally, we consider a third phase reference, where the phase of the fundamental 
frequency is shifted by 200°. This means that the phase at the second harmonic is shifted 
by 2 times 200°, or 400°, and the phase at the third harmonic is shifted by 3 times 200°, 
or 600°. So now, the reference at the fundamental is x1 = 1∠ 200°, the reference at the 
second harmonic is x2 = 1∠ 40°, the dividend is z2 = 0.7∠ 120°, and the divisor is y3 = 
0.4∠ 50°. These values are plotted in Figure 4. At this third phase reference, we again 
determine Rt

23, R(1)
23, and R(2)

23 using eqs. (9-11). Here, Rt
23 = 1.75∠ 86.67° is 

inconsistent with the answers determined at the first and second phase references by 120° 
(360°/3). The ratio R(2)

23 = 1.75∠ 206.67° is also inconsistent with the answers 
determined at the first and second phase references. The ratio R(1)

23 = 1.75∠ 326.67°, 
however, is consistent with the answers determined at the first and second phase 
references. The values of all of the quantities at the third phase reference are shown in the 
third column of Table 1. 
 
 Examining the fifth row of Table 1, we see that Rt

23 does indeed give a time-
variant phase. Since k/l = 2/3 is not an integer, there is a phase ambiguity of 360° / 3, or 
120°. Examining the sixth row of Table 1, we see that that R(2)

23 also gives a time-variant 
phase since the reference signal is located at the second harmonic. Since l/n = 3/2 is not 
an integer, there are 2 possible answers with a phase ambiguity of 360° / 3, or 120°. 
Examining the seventh row of Table 1, we see that that R(1)

23 gives a time-invariant phase 
since the reference signal is located at the fundamental frequency. Thus, the only time-
invariant ratio is R(1)

23. 
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Figure 2.  Time-domain plot of the fundamental reference x1, the dividend z2, and the 
divisor y3 at the first phase reference. 
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Figure 3.  Phasor plot of the fundamental reference x1, the dividend z2, and the divisor y3 
at the second phase reference [using superscript (2)]. 
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Figure 4.  Phasor plot of the fundamental reference x1, the dividend z2, and the divisor y3 
at the third phase reference [using superscript (3)]. 
 
 

IV. APPLICATION TO NONLINEAR LARGE-SIGNAL SCATTERING PARAMETERS 

 
In this section, we apply our methodology for preserving consistent phase 

relationships in ratios of two harmonically related signals to the definition of time-
invariant nonlinear large-signal scattering parameters.   

 
In previous work [3-4], we introduced the concept of nonlinear large-signal 

scattering parameters. Like commonly used linear S-parameters, nonlinear large-signal 
S-parameters can also be expressed as ratios of incident and reflected wave variables. 
However, unlike linear S-parameters, nonlinear large-signal S-parameters depend upon 
the signal magnitude and must take into account the harmonic content of the input and 
output signals since energy can be transferred to other frequencies in a nonlinear device. 

 
For simplicity, we consider a two-port device excited at port 1 by a single-tone 

signal (a11) at a frequency f1. This condition is commonly encountered with power 
amplifiers and frequency doublers, although the approach can be generalized to any 
number of ports with multiple excitations that are harmonically related. In this case, we 
extract an input reflection coefficient 
 

                     ( ) ( ) ( )[ ] ,
11for0111

11

1
111 ≠∧≠∀∀=

−∠=
nmnma

k
a
b

mn
ab

k
k k

φφS             (12) 

 



60th ARFTG Conference Digest, pp. 113-122, Washington, D.C., Dec. 2002. 

where ajl (port j, spectral component number l) and bik (port i, spectral component number 
k) refer to the complex incident and scattered traveling voltage waves, respectively, and 
Sijkl indicates the nonlinear large-signal S-parameter. Instead of simply taking the ratio of 
b1k to a11, we phase reference to a11. To do this we must subtract k times the phase of a11 
from that of b1k . This concept is identical to the simplified case presented in eq. (8), 
where a11 serves as both the reference and the divisor.  The additional limitation imposed 
on eq. (12) is that all other incident waves other than a11 equal zero. Another valuable 
parameter, the forward transmission coefficient, is similarly extracted as 
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This parameter provides the designer with a value of the gain or loss through a device, 
either at the fundamental frequency, or converted to a higher harmonic frequency.  
 
 Assuming a nonlinear model of a device or circuit exists, nonlinear large-signal 
S-parameters can be used to interrogate the model at certain conditions and provide a 
designer with useful engineering figures of merit. We provide an example where we look 
at the large-signal gain S21k1 as a function of power for a nonlinear lumped-element 
model of a 2×90 µm GaAs pHEMT device operating at 5 GHz and a bias of VDS = 3V and 
VGS = -0.5 V [5-6], simulated using harmonic-balance with all a’s other than a11 forced to 
zero. Figures 5 and 6 plot the magnitude and phase of S2111 and S2131 as a function of 
input power. We get a quantitative measure of the large-signal gain using nonlinear large-
signal S-parameters. In Figure 5, we see that the magnitude of S2111 rolls from 15.16 dB 
at |a11| = -20 dBm to 8.44 dB at |a11| = 10 dBm, while the phase of S2111 remains nearly 
constant at around 135°. In Figure 6, we see that the magnitude of S2131 increases from    
-46.55 dB at |a11| = -20 dBm to -5.95 dB at |a11| = 10 dBm, while the phase of S2131 varies 
between -138° and -120°. 

 

V. CONCLUDING REMARKS 

 
We described a method for preserving time-invariant phase relationships when 

ratios are taken between two harmonically related signals by introducing a third signal 
that is used as a phase reference. We showed that a reference signal must be present at the 
fundamental frequency in order for time-invariant phase relationships to exist between 
ratios of any two harmonically related signals. We provided a simple example to illustrate 
our technique, and showed how this method is implemented when defining time-invariant 
nonlinear large-signal scattering parameters. 

 
In the near future, we plan to examine whether this method can be generalized or 

modified to preserve consistent phase relationships when ratios are taken between two 
signals not harmonically related. In this case, a third signal occurs at a frequency that is a 
common factor of the first two and may not be readily available for use as a reference. 
Such a method could be very useful for mixer applications. 
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Figure 5.  Magnitude and phase of S2111 as a function of power for a nonlinear lumped-
element model of a 2×90 µm GaAs pHEMT device operating at 5 GHz and a bias of VDS 
= 3V and VGS = -0.5 V. 
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Figure 6.  Magnitude and phase of S2131 as a function of power for a nonlinear lumped-
element model of a 2×90 µm GaAs pHEMT device operating at 5 GHz and a bias of VDS 
= 3V and VGS = -0.5 V. 
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